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Abstract. The aim of this work is to show, on the basis of numerical
examples based on simulation results, how the strong stability bound on
ruin probabilities established by Kalashnikov (2000) is affected regarding
to different heavy-tailed distributions.

Keywords: Approximation, Risk model, Ruin probability, Strong sta-
bility, Large claim.

1 Introduction

In the actuarial literature, the evolution in time of the capital of an insurance
company is often modeled by the process of reserve resulting from the difference
between the premium-income and the pay-out process.

The probability of ruin is one of the basic characteristics of risk models and
various authors investigate the problem of its evaluation (for example, see [1] and
[11], Chapter 11). However, it cannot be found in an explicit form for many risk
models. Furthermore, parameters governing these models are often unknown and
one can only give some bounds for their values. In such a situation the question
of stability becomes crucial.

Indeed, when using a stochastic model in insurance mathematics one has to
consider this model as an approximation of the real insurance activities. The
stochastic elements derived from these models represent an idealization of the
real insurance phenomena under consideration. Hence the problem arises out of
establishing the limits in which we can use our ’ideal’ model. The practitioner
has to know the accuracy of his recommendations, resulting from his investiga-
tions based on the ideal model [2]. Using approximations means here that we
investigate ’ideal’ models which are rather simple, but nevertheless close in some
sense to the real (disturbed) model.

After introducing the problem of stability in insurance mathematics by Beir-
lant and Rachev [2], Kalashnikov [7] investigated the estimation of ruin prob-
abilities in the univariate risk models, using the strong stability method, the
reversed process notion and the supplementary variables technique.
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On the other hand, we often deal in insurance and finance with large claims
that are described by heavy-tailed distributions (Pareto, Lognormal, Weibull,
. . . ). It is worthy of notice the special importance of heavy-tailed distributions,
which is increasing the last years because of occasional appearance of huge claims
[4,9,5,6,12]. Indeed, the loss distribution in actuarial science and financial risk
management is fundamental and of ultimate use. It describes the probability
distribution of payment to the insured. In most situations losses are small, and
extreme losses rarely occur. But the number and the size of the extreme losses can
have a substantial influence on the profit of the company. Traditional methods
in actuarial literature use parametric specifications to model loss distributions
by a single parametric model or decide to analyze large and small losses sepa-
rately. The most popular specifications are the lognormal, Weibull and Pareto
distributions or a mixture of lognormal and Pareto distributions.

The aim of this work is to study, on the basis of numerical examples based
on simulation results, the sensitivity of the strong stability bound on ruin prob-
abilities established by Kalashnikov [7] regarding to the different heavy-tailed
distributions mentioned above.

2 Strong Stability of a Univariate Classical Risk Model

2.1 Description of the Model

The classical risk process in the one-dimensional situation can be stated as

X(t) = u+ ct− Z(t), t ≥ 0, (1)

whereX(t) is the surplus of an insurance company at time t ≥ 0, u ≥ 0 the initial
surplus, c the rate at which the premiums are received, and Z(t) the aggregate

of the claims between time 0 and t. Z(t) =
∑N(t)

i=1 Zi, where {Zi, i ≥ 1} is a
sequence of iid random variables, representing the claim amounts of distribution
function denoted by F (x) and mean claim size denoted by μ, {N(t), t ≥ 0}
being a Poisson process with parameter λ, representing the number of claims.
The relative security loading θ is defined by θ = c−λμ

λμ . We further assume that
c > λμ, the expected payment per unit of time.

Ruin theory for the univariate risk process defined as (1) has been extensively
discussed in the literature (for example, see [1] and [11], Chapter 11).

Let us denote the reversed process associated to the risk model by {Vn}n≥0.
The strong stability approach consists of identifying the ruin probability Ψa(u)
associated to the risk model governed by a vector parameter a = (λ, μ, c), with
the stationary distribution of the reversed process {Vn}n≥0 [7], i.e.

Ψa(u) = lim
n→∞P(Vn > u),

where u is the initial reserve.
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2.2 Strong Stability of a Univariate Classical Risk Model

For a general framework on the strong stability method, the reader is referred
to [8]. However, let us recall the following basic definition.

Definition 1. [8] A Markov chain X with transition kernel P and invariant
measure π is said to be υ-strongly stable with respect to the norm ‖.‖υ (‖α‖υ =∫∞
0

υ(x)|α|(dx), for a measure α), if ‖P‖υ < ∞ and each stochastic kernel
Q in some neighborhood {Q : ‖Q − P‖υ < ε} has a unique invariant measure
μ = μ(Q) and ‖π − μ‖υ → 0 as ‖Q− P‖υ → 0.

More concrete, following the preceding definition, our approximation problem
can be stated in the following way: if the input elements of the ideal and real
models are ’close’ to each other, then, can we estimate the deviation between the
corresponding outputs? In other words, the stability theory in general renders the
following picture: If we have as input characteristics the distribution function of
the service times (claims distribution function for our risk model) and as output
characteristics the stationary distribution of the waiting times (ruin probability
for our risk model), the stability means that the convergence in L1 of the input
characteristics implies the weak convergence of the output characteristics.

Let a′ = (λ′, μ′, c′) be the vector parameter governing another univariate
risk model defined as above, its ruin probability and its reversed process being
respectively Ψa′(u) and {V ′

n}n≥0.
The following theorem determines the v-strong stability conditions of a uni-

variate classical risk model. It also gives the estimates of the deviations between
both transition operators and both ruin probabilities in the steady state.

Theorem 1. [7] Consider a univariate classical risk model governed by a vector
parameter a. Then, there exists ε > 0 such that the reversed process {Vn}n≥0

(Markov chain) associated to this model is strongly stable with respect to the
weight function v(x) = eεx (ε > 0), x ∈ R

+.
In addition, if μ(a, a′) < (1 − ρ(ε))2, then we obtain the margin between the

transition operators P and P ′ of the Markov chains {Vn}n≥0 and {V ′
n}n≥0:

‖P − P ′‖v ≤ 2EeεZ|lnλc
′

λ′c
|+ ‖F − F ′‖v,

where,

μ(a, a′) = 2EeεZ|lnλc
′

λ′c
|+ ‖F − F ′‖v,

ρ(ε) = E(exp{ε(Z1 − cθ1)}),
‖F − F ′‖v =

∫ ∞

0

v(u)|d(F − F ′)|(u) =
∫ ∞

0

v(u)|f − f ′|(u)du.

Moreover, we have the deviation between the ruin probabilities:

‖Ψa − Ψa′‖v ≤ μ(a, a′)
(1− ρ(ε))((1 − ρ(ε))2 − μ(a, a′))

= Γ. (2)
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Remark 1. Without loss of generality, we relax some conditions by taking λ′ = λ
and c′ = c, then we have: μ(a, a′) = ‖F − F ′‖v =

∫∞
0

v(u)|f − f ′|(u)du. The
perturbation may concern the mean claim size parameter (i.e. μ′ = μ+ ε) or the
claim amounts distribution function F itself.

3 Simulation Based Study

We want to analyze the quality and the sensitivity of the bound defined as in
formula (2) of Theorem 1 regarding to certain heavy-tailed distributions. To do
so, we elaborated an algorithm which follows the following steps:

3.1 Algorithm

1) Introduce the parameters λ, μ, c of the ideal model, and λ′, μ′, c′ of the per-
turbed (real) model.

2) Verify the positivity of the relative security loadings θ and θ′ defined by:

θ = c−λμ
λμ and θ′ = c′−λ′μ′

λ′μ′ .

If yes, (*the ruin of the models is not sure*) go to step 3;
else return to step 1.

3) Initialize ε (ε > 0) such that 0 < ρ(ε) < 1 and Γ be minimal.
4) Compute μ(a, a′) =

∫∞
0 v(u)|f − f ′|(u)du, and test:

μ(a, a′) < (1 − ρ(ε))2 .
If yes, (*we can deduce the strong stability inequality*) go to step 5;
else increment ε with step p, then return to step 4.

5) Compute the bound Γ on the deviation ‖Ψa − Ψa′‖v such that:

‖Ψa − Ψa′‖v ≤ μ(a, a′)
(1− ρ(ε))((1 − ρ(ε))2 − μ(a, a′))

= Γ.

Using the above algorithm, we perform a comparative study (comparison of
the resulting error on ruin probabilities) based on simulation results obtained
with the following different distributions.

3.2 Simulated Distributions

In this section, we compare the following four distributions (Lognormal, Weibull,
logistic, mixture (Lognormal-Pareto)). In order to well discuss and judge our
results, we also use a benchmark distribution the exponential one (see Table 1).

1. The density of the Lognormal law

f(t/α, β) =
1

tβ
√
2π

e
− (log(t)−α)2

2β2 , t ≥ 0. (3)

2. The density of the Weibull law

f(t/α, β) = βα−βtβ−1e−( t
α )β , t ≥ 0. (4)
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3. The density of the truncated logistic law

f(t) =
2

s
e

t−μ
σ

(
1 + e

t−μ
σ

)−2

, t ≥ μ. (5)

4. The density of the mixture (p Lognormal and (1− p) Pareto) law

f(t) = p

(
1

tσ
√
2π

e−
(log(t)−μ)2

2σ2

)

+ (1− p)
(
(t− c)−(ρ+1)ρλρ

)
, t ≥ 0. (6)

5. The density of the exponential law

f(t) =
1

μ
e−t/μ, t ≥ 0. (7)

In general, these test distributions can be categorized as light (Weibull), medium
(Lognormal) and heavy-tailed (Pareto) [3]. Another classification of heavy-tailed
distributions can be found in [10], where the above distributions are defined to
depend on their parameters, that is to say, they may be either in the class of
heavy-tailed, light-tailed or medium-tailed distributions, and this according to
their parameters.

Table 1. Different simulated distributions

Mean Exp LogNormal Weibull Logistic Mixture: p ∗ LogN + (1− p)Pareto
λ (a, b) (a, b) (μ, s) (p, a, b, α, β, c)

2.00 2.00 (0.5816 , 0.4724) (2.2397 , 3) (1.0000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 2.1111)

2.10 2.10 (0.6398 , 0.4521) (2.3517 , 3) (1.1000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 2.3333)

2.20 2.20 (0.6945 , 0.4334) (2.4637 , 3) (1.2000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 2.5556)

2.30 2.30 (0.7463 , 0.4161) (2.5756 , 3) (1.3000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 2.7778)

2.40 2.40 (0.7954 , 0.4001) (2.6876 , 3) (1.4000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 3.0000)

2.50 2.50 (0.8421 , 0.3853) (2.7996 , 3) (1.5000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 3.2222)

2.60 2.60 (0.8865 , 0.3714) (2.9116 , 3) (1.6000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 3.4444)

2.70 2.70 (0.9290 , 0.3585) (3.0236 , 3) (1.7000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 3.6667)

2.80 2.80 (0.9696 , 0.3465) (3.1356 , 3) (1.8000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 3.8889)

2.90 2.90 (1.0085 , 0.3352) (3.2476 , 3) (1.9000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 4.1111)

3.00 3.00 (1.0459 , 0.3246) (3.3595 , 3) (2.0000 , 0.7213) (0.7000 , 0.3051 , 0.4480 , 0 , 3.0000 , 4.3333)

3.3 Numerical and Graphical Results

This section is devoted to present the different numerical and graphical results
obtained when studying the influence of heavy-tailed distributions on the sta-
bility of a risk model, by considering the distributions defined in the section
above.
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Table 2. Stability intervals regarding to different distributions

ε Mean Exp Lognormal Weibull Logistic Mixture

-0.5 2.00 [ 0.0002 , 0.3083] ]0 ,0.2955 ] [ 0.0005 , 0.2685 ] [ 0.0003 , 0.1933 ] [ 0.0002 , 0.3002 ]

-0.4 2.10 [ 0.0002 , 0.3320] ]0 ,0.3726 ] [ 0.0004 , 0.3424 ] [ 0.0002 , 0.2807 ] [ 0.0002 , 0.3238 ]

-0.3 2.20 [ 0.0001 , 0.3610] ]0 ,0.4645 ] [ 0.0003 , 0.431 ] [ 0.0002 , 0.3873 ] [ 0.0002 , 0.3543 ]

-0.2 2.30 [ 0.0001 , 0.3999] ]0 ,0.5826 ] [ 0.0003 , 0.547 ] [ 0.0002 , 0.5264 ] [ 0.0001 , 0.3965 ]

-0.1 2.40 [ 0.0001 , 0.4627] ]0 ,0.7565 ] [ 0.0002 , 0.7306 ] [ 0.0001 , 0.7357 ] [ 0.0001 , 0.4657 ]

0.00 2.50 ] 0 , ∞ [ ]0 , ∞ [ ] 0 , ∞ [ ] 0 , ∞ [ ] 0 , ∞ [

+0.1 2.60 [ 0.0001 , 0.6172 ] ] 0 , 0.7571 ] [ 0.0002 , 0.7121 ] [ 0.0001 , 0.7166 ] [ 0.0001 , 0.5786 ]

+0.2 2.70 [ 0.0001 , 0.5295 ] ] 0 , 0.5590 ] [ 0.0002 , 0.5261 ] [ 0.0002 , 0.4921 ] [ 0.0001 , 0.4722 ]

+0.3 2.80 [ 0.0001 , 0.4772 ] ] 0 , 0.4330 ] [ 0.0003 , 0.4145 ] [ 0.0002 , 0.3465 ] [ 0.0002 , 0.4066 ]

+0.4 2.90 [ 0.0002 , 0.4398 ] ] 0 , 0.3399 ] [ 0.0004 , 0.3352 ] [ 0.0002 , 0.2397 ] [ 0.0002 , 0.3591 ]

+0.5 3.00 [ 0.0002 , 0.4108 ] ] 0 , 0.2663 ] [ 0.0004 , 0.2744 ] [ 0.0003 , 0.1573 ] [ 0.0002 , 0.3224 ]

Table 3. Stability bound Γ regarding to different distributions

ε Mean Exp Lognormal Weibull Logistic Mixture

-0.5 2.00 0.1954 1.0098 0.9509 2.0178 0.2286

-0.4 2.10 0.1463 0.6713 0.6224 1.1851 0.1823

-0.3 2.20 0.1032 0.4302 0.3943 0.6986 0.1361

-0.2 2.30 0.0649 0.2498 0.2273 0.3819 0.0903

-0.1 2.40 0.0307 0.1105 0.0999 0.1612 0.0449

0.00 2.50 0 0 0 0 0

+0.1 2.60 0.0267 0.1087 0.0957 0.1613 0.0427

+0.2 2.70 0.0534 0.2418 0.2064 0.3819 0.0853

+0.3 2.80 0.0801 0.4068 0.3357 0.6990 0.1277

+0.4 2.90 0.1067 0.6166 0.4883 1.1861 0.1695

+0.5 3.00 0.1333 0.8915 0.6704 2.0216 0.2106

3.4 Discussion of Results

Note, according to Table 2, that for all the distributions, the stability domain
decreases with the increase of the perturbation ε. It is evident that a risk model
tends to not be stable with a great perturbation. Note also the closure of the
stability domains of the mixture distribution to those of the exponential one.

Notice also, following Table 3 and Figure 1, that the strong stability bound
Γ increases with the increase of the perturbation ε. Even taking distributions
having the same mean as the exponential one, one obtains bounds relatively far
away from those of the exponential one. This can be explained by the influence
of the weight of the tails of the different considered distributions. Comparing to
the other distributions, we note that the strong stability bound for the mixture
distribution is more closer to that of the exponential one. May be it is due to the
special choice of the parameters of this distribution. That is to say, one may be
able, in this case, to justify the approximation of the risk model with a general
mixture claim distribution by another risk model governed by an exponential
law.
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Fig. 1. Variation of the stability bound Γ regarding to different distributions

Note that in the literature, many authors pointed out the limits of the results
of Kalashnikov [7] on the stability of risk models and the difficulty of applying
them in case of large claims (heavy-tailed distributions). The present results
show that in some situations, approximating the characteristics of a risk model
with a general heavy-tailed distribution by a classical model is possible, that is
to say, one may approach its characteristics by those of a model governed by an
exponential distribution (see Tables 2 and 3 and Figure 1). This approximation
is in connection not only with the weight of the tail but also with other criteria
such as: the shape of the distribution, dispersion parameter, ...

4 Conclusion

We are interested, in this work, in the approximation of the ruin probability of
a classical risk model by the strong stability method. We studied the impact of
some large claims (heavy-tailed distributions) on the quality of this approxima-
tion. A comparative study based on numerical examples and simulation results,
involving different heavy-tailed distributions, is performed.

The literature indicates that, in general, the results of Kalashnikov [7] on
the stability of risk models, are not applicable for heavy-tailed distributions.
The present results show that, in some situations, the approximation of the
characteristics of a risk model with a heavy-tailed distribution by a classical
model (with an exponential law) is possible. This approximation is linked not
only with the weight of the tail but also with other criteria such as the shape of
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the distribution. These results could be very useful in the case of an unknown
distribution that must be replaced by an estimate (kernel estimate). Indeed, in
this case, we need a prior knowledge, at least approximately, of the shape of the
unknown distribution.
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